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Abstract

By 13,000 BP human populations were present across North America, but the exact date of

arrival to the continent, especially areas south of the continental ice sheets, remains

unclear. Here we examine patterns in the stratigraphic integrity of early North American

sites to gain insight into the timing of first colonization. We begin by modeling stratigraphic

mixing of multicomponent archaeological sites to identify signatures of stratigraphic integrity

in vertical artifact distributions. From those simulations, we develop a statistic we call the

Apparent Stratigraphic Integrity Index (ASI), which we apply to pre- and post-13,000 BP

archaeological sites north and south of the continental ice sheets. We find that multiple early

Beringian sites dating between 13,000 and 14,200 BP show excellent stratigraphic integrity.

Clear signs of discrete and minimally disturbed archaeological components do not appear

south of the ice sheets until the Clovis period. These results provide support for a relatively

late date of human arrival to the Americas.

Introduction

No consensus has been reached among archaeologists about the date of initial human arrival

to the Americas, but all agree that human populations were distributed across the North

American continent by 13,000 BP, as evidenced by fluted Clovis projectile points and associ-

ated artifacts from surface and buried contexts [1–5]. Before 13,000 BP, the clearest evidence
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for human presence comes from eastern Beringia, the unglaciated portions of Alaska and the

Yukon Territory [e.g, 6–13]. Evidence for humans south of the Laurentide and Cordilleran ice

sheets prior to 13,000 BP remains sparse and controversial despite more than a century of

fieldwork in the region [e.g., 14–26]. Archaeologists widely accept the critical appraisal of arti-

facts from firmly dated pre-13,000 BP contexts as a valid means of evaluating claims for early

human presence in the Americas [27–32]. When artifacts are found in buried contexts pre-dat-

ing 13,000 BP, there are at least two possible explanations for their occurrence—humans were

present before 13,000 BP, or humans were not present but younger artifacts have intruded into

older sedimentary contexts. Many debates regarding the peopling of the Americas can be

reduced to distinguishing between these two possibilities.

Unambiguous association between artifacts and the strata from which they are derived has

been a hallmark of establishing the antiquity of humans in the Americas since the earliest days

of American archaeology [27,31], yet archaeological tools for evaluating these associations

remain crude. Here, we develop a simple means of evaluating the stratigraphic integrity of

association between buried archaeological occupations and dated strata and then evaluate the

early North American archaeological record using existing provenience data to distinguish

between an early or late arrival. The classic Clovis-first model posits that humans arrived in

eastern Beringia sometime prior to the Clovis period and breached the continental ice sheets

around or just before 13,000 BP [33,34]. If so, the oldest evidence for intact occupations should

first occur in eastern Beringia and then appear south of the ice sheets in Clovis times. If there

was a widespread pre-13,000 BP population south of the ice sheets, there should be clear evi-

dence for it in the form of unambiguous occupations from archaeological contexts reliably

pre-dating 13,000 BP.

Modeling stratigraphic mixing

To develop expected differences between vertically mixed and unmixed multicomponent sites,

we created a simulation for R v. 4.1.1 [35] that combines a depositional history, an occupa-

tional history, and a disturbance model (S1 File). For our simulations, we hold depositional

and occupational history constant, but our model can be customized to accommodate any

such history. In our simulation, sediments accumulate over 18,000 years at a constant rate of

0.1 mm per year. Seven occupations take place, each spaced 2,000 years apart with the first

occurring at 12,500 BP and the last at 500 BP. During each occupation, 500 artifacts are depos-

ited on the ground surface at the time, and each artifact is assigned a random arbitrary hori-

zontal provenience. Each year, all artifacts are moved randomly up or down a fixed distance

determined by a maximum dispersal rate and depth. If any artifacts breach the ground surface,

they are placed on the surface that exists at the time. It is assumed that artifacts closer to the

current ground surface are more susceptible to post-depositional disturbance and displace-

ment and therefore should move more than those at greater depth. Following from that

assumption, we modeled actual artifact dispersal rates (r) as a logistic function of depth (d)

and maximum dispersal rate (rmax):

r ¼
rmax

0:777þ e� 3ð0:5� dÞ
ð1Þ

This function is shown graphically in S1 Fig. If the maximum dispersal rate is set to 1 mm

per year, for example, an artifact 5 cm beneath the ground surface will move 0.97 mm each

year up or down. An artifact 50 cm beneath the surface will move 0.56 mm per year. An artifact

buried 1 m in depth will move 0.19 mm, and one at 2 m of depth will move around 0.01 mm

per year. We do not mean to imply that this function can be used to describe all archaeological
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cases, but it is intended to be a reasonable approximation of the relative degree to which arti-

facts at different depths are subject to post-depositional disturbance processes originating

from the ground surface such as bio- and cryoturbation.

In Fig 1, we illustrate four outputs of the simulation while varying maximum dispersal rate

(rmax). Specifically, we show resulting backplots and vertical density histograms. With rmax set

to a low rate of 0.1 mm per year, each occupation is vertically discrete with culturally sterile

zones separating occupations. Artifacts have not moved far beyond the surfaces on which they

were originally deposited. When viewed as a vertical density histogram, the minimally dis-

turbed case exhibits a very peaked, multimodal distribution with clear stratigraphic integrity

(Fig 1a and 1b).

When rmax is set to a much higher rate (e.g., 3 mm per year), individual occupations are not

stratigraphically discrete and become visibly mixed (Fig 1g and 1h). As others have found,

with significant mixing archaeological distributions become vertically homogenized [36,37],

although artifacts from different occupations generally maintain their stratigraphic order. In

this situation, it would be challenging to assign individual artifacts to specific occupations. It

would also be difficult using vertical distributions alone to determine how many occupations

occurred. In the highly mixed simulation, artifacts can be found well above and below the sur-

faces on which they were deposited. At depth, artifact densities slowly decline to zero. Near the

surface, a sharp mode in artifact count is evident because the most recent occupation has had

the least time to be dispersed leaving somewhat high densities at the uppermost levels. When

viewed as a vertical density histogram, the overall distribution shows no gaps, and little multi-

modality. Overall, the vertical density distribution has a down-skewed appearance. The two

intermediate cases show intermediate attributes of the minimally and maximally mixed cases,

with varying degrees of multimodality (Fig 1c–1f).

To illustrate the effect of increased mixing on the apparent age of the deepest artifacts in

this system, we varied rmax from 0.1 to 5 mm per year and ran ten iterations of each model to

determine how the apparent age of the deepest artifact increases with greater disturbance (Fig

2). Apparent age in this context refers to the age of the sediments from which the deepest arti-

fact was recovered. With increased mixing, artifacts move progressively downward into older

sediments producing the false impression of the presence of humans on a site hundreds to

thousands of years prior to the initial occupation.

ASI: Apparent Stratigraphic Integrity Index

In our simulated multicomponent archaeological cases, the degree of vertical mixing is clearly

reflected by changes in vertical artifact distributions. We developed a statistic that we call the

Apparent Stratigraphic Integrity Index (ASI) that captures this variability. The use of the term

“apparent” is because frequently reoccupied but minimally disturbed sites could theoretically

exhibit similar stratigraphic artifact distributions to highly disturbed sites (S2 File; S2 Fig).

Likewise, the vertical artifact distribution from a highly disturbed site could exhibit properties

typical of a minimally disturbed locality. To determine with greater certainty the extent to

which artifacts have moved vertically in an actual archaeological site would require additional

kinds of data (e.g., systematic refitting). All things being equal, however, we expect minimally

disturbed multicomponent sites to show dramatic changes in artifact density from stratum to

stratum (Fig 1a and 1b) and heavily disturbed sites to show gradual changes in density from

level to level (Fig 1g and 1h).

The ASI is based on changes in the artifact frequency between adjacent excavation levels. In

general statistical nomenclature, this statistic could be called the relative mean absolute succes-

sive difference and is similar to the unstandardized mean absolute successive difference
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Fig 1. Simulations of stratigraphic mixing of a multicomponent archaeological site shown as backplots (left) and histograms of artifact elevation

(right) while varying the maximum rate of artifact dispersal (rmax). Horizontal black lines on backplots show the original stratigraphic position of

occupations before post-depositional disturbance. (a&b) rmax = 0.1 mm/yr. (c&d) rmax = 0.5 mm/yr. (e&f) rmax = 1.0 mm/yr. (g&h) rmax = 3.0 mm/yr.

https://doi.org/10.1371/journal.pone.0264092.g001
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(MASD) [38]. Before calculating the ASI, consecutive levels with zero artifacts are collapsed to

single zero values. After that transformation, the calculation of ASI uses the mean absolute

change in artifact frequency (f) between all adjacent levels divided by two times the mean arti-

fact frequency for all levels:

ASI ¼
Pn� 1

i¼1
jfi � fiþ1j

2

Pn

i¼1
fi

n

ð2Þ

For most cases, the ASI varies between zero and one with higher values implying greater

stratigraphic integrity. Consecutive sterile levels are reduced to a single zero value because if

left in, they would result in a lower ASI value when they should theoretically have little bearing

on the question of stratigraphic integrity. To calculate an ASI for a site, an excavation unit, or

any systematically excavated area, the function requires an array of artifact counts sorted by

excavated level (S1 File). One disadvantage of the ASI as we have constructed it is that its value

can vary depending upon an arbitrary choice of thickness of excavation levels or elevation

bins. For our application, however, due to the nature of the available data, we use artifact

counts from standardized 5 cm levels. This choice is also justified because the use of 5 cm levels

is fairly standard practice in excavations of hunter-gatherer archaeological sites. It is important

to note that comparison of ASI values among sites is best done using standardized level thick-

nesses, since coarse units of inquiry (i.e., thicker levels) will exhibit lower ASI values than fine

ones.

In Fig 3, we show ASIs for six simulated vertical artifact distributions. Generally speaking,

highly homogenized vertical distributions have low ASI values, but those with gaps represent-

ing sterile or low density strata separating occupations exhibit high ASIs. In the examples

shown, relatively intact distributions with little mixing have ASIs from 0.4 to 1.0. Highly

mixed sites tend to show values less than 0.3.

Fig 2. The relationship between simulated rates of artifact dispersal (rmax) and the apparent age of the deepest artifact. Dashed

line shows the age of the initial occupation at 12,500 BP.

https://doi.org/10.1371/journal.pone.0264092.g002
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Fig 3. ASI values for six simulated artifact distributions from no mixing (a) to severe mixing (f).

https://doi.org/10.1371/journal.pone.0264092.g003
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In addition to sensitivity to bin width (or the width of excavated levels), the ASI is also

affected by small sample size (S3 Fig). For several levels of disturbance, we randomly sampled

between ten and 3,500 artifacts from simulated sites and calculated the resulting ASIs (S2 File).

This exercise showed that low density sites with very few artifacts will exhibit inflated ASI val-

ues. Sites that show less than a mean of approximately 30 artifacts per level will appear more

intact than they actually are when measured by ASI. This problem reinforces the idea that it is

difficult to determine the stratigraphic integrity of any archaeological site with a small assem-

blage. On the opposite end of the spectrum, ASI values should be most reliable for sites with

high artifact densities.

The apparent stratigraphic integrity of paleoindian sites

We compiled vertical density data from a series of North American multicomponent sites that

contain Paleoindian occupations (Fig 4, S2 File). No permits were required for the described

study, which complied with all relevant regulations. Artifact density data are either first

reported here or were taken from published literature. The sample includes eight sites with

components argued to pre-date 13,000 BP, five from eastern Beringia and three from south of

the ice sheets. Beringian pre-13,000 BP sites include Broken Mammoth [7,39,40], Dry Creek

[10,12], Holzman South [9,13], Swan Point [6,8], and Owl Ridge [41,42]. All Beringian sites

occur within a 200 km reach of the Tanana River valley and its tributaries in eastern Alaska

and are buried in Pleistocene loess. The oldest components in all of these sites are argued to

date between ca. 13,000 and 14,200 BP. Pre-13,000 BP sites south of the ice sheets include Coo-

per’s Ferry [19,43,44], Debra L. Friedkin [18,45], and Gault [46,47]. The oldest occupations at

these sites are hypothesized to date to at least 15,500 to 18,500 BP [18,19,45,47]. We considered

the inclusion of other potential pre-Clovis sites [e.g., 16,20,21,48], but appropriate data were

not available, the site was insufficiently buried, or artifact counts were too low. Four multicom-

ponent sites with Paleoindian occupations post-dating 13,000 BP are also part of the sample.

They include Alm Shelter [49], Helen Lookingbill [50], Hell Gap, Locality I [51–53], and Shaw-

nee-Minisink [54–56]. Importantly, Shawnee-Minisink has a Clovis component, and due to

the nature of the excavations at Shawnee (S2 File), we only have vertical artifact distribution

data for the strata surrounding and including the Clovis component.

To generate vertical density profiles, for all but two sites (Gault and Friedkin), we binned

the elevations of piece-plotted artifacts into 5 cm levels after adjusting for stratigraphic tilt.

When using this method, we omitted artifacts recovered from screens due to lower precision

provenience. To account for sloping stratigraphy when present, we isolated portions of sites

where at least one planar artifact concentration could be discerned within a three-dimensional

backplot and fit a plane through it using multiple linear regression (S4 Fig). We then trans-

formed absolute artifact elevations to relative elevations above or below that plane. If no strati-

graphic slope could be discerned, we binned artifacts into 5 cm levels using elevations. We do

not have piece-plot data for Gault and Debra L. Friedkin, so we compiled vertical density pro-

files from previously published 5 cm level counts [18,47] and could not account for strati-

graphic tilt.

All five eastern Beringian sites show multiple stratigraphically discrete archaeological com-

ponents (Fig 5). Backplots of these Alaskan sites show easily defined planar archaeological

components separated by low density or sterile stratigraphic units. Vertical density histograms

are unambiguously multimodal. The pre-13,000 BP sites south of the continental ice sheets dis-

play very different patterns. Cooper’s Ferry and Friedkin exhibit similar density profiles to

each other, even though artifact densities between the two sites differ by three orders of magni-

tude. Both sites exhibit traits expected of vertically mixed deposits with smoothed and
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homogenized distributions slowly tailing off with depth. The profile from Gault, however,

shares traits with both the Beringian and southern pre-Clovis sites. It is clearly multimodal,

but it lacks clear gaps or sterile zones between archaeological components. To what extent the

Gault profile is affected by sloping stratigraphy, we do not know.

We calculated ASI values for all pre- and post-13,000 BP sites (Table 1; Fig 6). There are

clear differences between the pre-13,000 BP sites north and south of the continental glaciers.

All five Beringian sites show relatively high levels of apparent stratigraphic integrity with ASI

values ranging from 0.367 at Broken Mammoth to 0.546 at Owl Ridge. The Owl Ridge ASI is

likely inflated due to relatively low artifact densities, but its deepest component is stratigraphi-

cally discrete. Still, all early Beringian sites cluster together. Early sites south of the ice sheets

also form a cluster, but on the low end of the ASI scale. The Debra L. Friedkin site has the

Fig 4. Map of sites used in this study. (1) Dry Creek and Owl Ridge, (2) Holzman South, Swan Point, and Broken Mammoth, (3) Cooper’s Ferry, (4)

Alm Shelter; (5) Helen Lookingbill; (6) Hell Gap; (7) Gault and Debra L. Friedkin, (8) Shawnee-Minisink. Light blue polygons show the estimated

extent of the continental ice sheets at 14,900 BP from Dalton et al. [57]. Digital elevation model of North America is from the USGS Global Multi-

resolution Terrain Elevation Dataset [58].

https://doi.org/10.1371/journal.pone.0264092.g004
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Fig 5. Backplots and/or vertical density histograms for all pre-13,000 BP archaeological sites in the study.

https://doi.org/10.1371/journal.pone.0264092.g005
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lowest ASI of any observed site at 0.045. The Gault site shows the highest apparent strati-

graphic integrity of these three at 0.219. Cooper’s Ferry has an intermediate value, which could

be inflated due to low artifact counts. Differences between the mean ASIs of early northern

and southern sites are significant (Welch t-test, t = 5.359, df = 3.303, two-tailed p = 0.01).

While the post-13,000 BP sites south of the ice sheets show extremely variable ASI from 0.343

(Helen Lookingbill) to 0.676 (Shawnee Minisink) (S5–S8 Figs), they are higher than all sup-

posed pre-Clovis sites south of the ice sheets. They are also not of demonstrably different mag-

nitude than the pre-13,000 BP sites north of the ice sheets (Welch t-test, t = 0.418, df = 3.87,

two-tailed p = 0.698), but they are significantly greater than the southern pre-13,000 BP sites

(Welch t-test, t = 3.096, df = 4.863, two-tailed p = 0.028).

Table 1. ASI values and mean items per 5 cm level for all sites in the study.

Site Mean Items Per 5 cm Levela ASI

Alm Shelter 14.6 0.386

Broken Mammoth 27.8 0.367

Cooper’s Ferry 14.1 0.186

Debra L. Friedkin 7150 0.045

Dry Creek 88.9 0.489

Gault 752 0.219

Helen Lookingbill 74.9 0.343

Hell Gap 12.4 0.367

Holzman South 78.5 0.477

Owl Ridge 5.3 0.546

Shawnee-Minisink 93.3 0.676

Swan Point 59.3 0.510

aMean counts are calculated after removal of consecutive sterile levels.

https://doi.org/10.1371/journal.pone.0264092.t001

Fig 6. ASI values for all pre- and post-13,000 BP sites in the study.

https://doi.org/10.1371/journal.pone.0264092.g006
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Discussion

Integrity of association between artifacts and the dated stratigraphic contexts from which they

derive is a baseline standard for establishing the antiquity of humans in the Americas. Our sys-

tematic evaluation of some of the earliest buried archaeological sites in North America sup-

ports a relatively late arrival of humans to areas south of the continental ice sheets. In our

sample, the oldest sites demonstrating relatively unmixed and discrete occupations prior to

13,000 BP all occur in eastern Beringia, which is noteworthy considering these sites are located

in an area commonly affected by cryoturbation [12,42]. The archaeologists working at these

Alaskan sites were aware of and can identify the problems that bioturbation, solifluction, and

other phenomena can bring to the excavation, data recovery, and its analysis and interpreta-

tion; excavators frequently consulted with pedologists and Quaternary geologists throughout.

The Alaskan sites analyzed here contained unambiguous minimally disturbed archaeological

components. For example, at Broken Mammoth, Swan Point, and several other sites the stra-

tigraphy was straightforward and the radiocarbon dates were in correct order [59]. At Dry

Creek [12] and Broken Mammoth [60,61], the oldest cultural component occurred beneath a

thin sand layer that physically separated that component from the younger components. At

the Holzman site, up to 20 cm of culturally sterile loess deposits separate components 4 from

component 5a and sterile bands of sand deposits separate components 5a from 5b [9,13].

All of the pre-13,000 BP sites south of the continental ice sheets display patterns of signifi-

cant mixing. South of the ice sheets, the first evidence for a discrete occupation is from the Clo-

vis period at the Shawnee-Minisink site, which given its latitude and age, could have also

experienced cryoturbation. Stratigraphically discrete occupations regularly occur in the

archaeological record from the Clovis period onward. Furthermore, Shawnee-Minisink is one

of several Clovis sites to exhibit a stratigraphically discrete cultural occupation [e.g., 62–69];

this is a trait clearly associated with the Clovis complex and not associated with any sites pre-

dating Clovis in the New World, except those in Beringia. To some extent, data availability for

the oldest purported sites in the Americas undermined this study by limiting sample size of

site south of the Canadian ice sheets. Sites claimed to be older than 13,000 BP are few and data

supporting their status as sites have been poorly disseminated. Given the status of available

data regarding these sites, we must question whether there are any sites in the Americas south

of the ice sheets that exhibit an unambiguous and stratigraphically discrete cultural occupation

with sufficient numbers of artifacts of clear human manufacture.

One site that might be argued to meet those criteria is Monte Verde, Chile [24,70,71], but

many researchers question whether most objects from the MV-II Pleistocene peat bog are

truly artifacts, especially the organic items. There are only about six items that satisfy most crit-

ics as undoubtedly of human manufacture [27,72]. Other sites, like Page-Ladson and Paisley

Caves have very small numbers of artifacts, such that evaluating stratigraphic integrity is chal-

lenging [73,74]. Even where large numbers of questionable artifacts are argued to be present as

at Chiquihuite Cave or Pedra Furada, they do not occur in discrete identifiable archaeological

components [14,75].

Another site that might preserve a stratigraphically discrete occupation below Clovis is Cac-

tus Hill, Virginia, which is argued to have an archaeologically sterile zone separating the Clovis

and pre-Clovis levels [20,76,77], but data demonstrating stratigraphic separation have not

been published. Furthermore, no archaeologically sterile levels separating the Clovis and pre-

Clovis components are evident in the vertical artifact distribution data that have been pub-

lished [20]. Because excavated levels at Cactus Hill were not dug in uniform thicknesses and

no provenience data for piece-plotted artifacts are available, it is difficult to compare ASIs

from Cactus Hill to other sites. Nonetheless, using vertical artifact distribution data from
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Areas A/B and B of the site [20], it is possible to calculate ASIs, and like other pre-Clovis sites

south of the ice sheets, Cactus Hill does not preserve discrete archaeological components, and

ASIs generally fall in the range of 0.156 to 0.309 (S9 Fig). Furthermore, artifact counts gradu-

ally decline with depth (S9 Fig). Both findings suggest that Cactus Hill has likely experienced

some mixing, and the excavators have noted that “downdrift from upper levels” has affected

lower levels of the site [20].

All three of the pre-Clovis sites outside of Alaska included in this study have been argued

to be stratigraphically intact, and questions have been raised about two of them

[18,19,45,47,78,79]. Our analysis supports the hypothesis that mixing has affected these sites,

and furthermore, we note that it would be a simple matter to establish whether that is in fact

the case. The ideal way to do so would be systematic refitting of chipped stone artifacts with

the goal of searching for refits between components to determine to what extent items are

moving vertically in these sites. There is a long tradition of such studies in archaeology, includ-

ing Paleoindian archaeology both north and south of the ice sheets [39,42,46,80–85]. If little

vertical distance separates refitting and conjoining artifacts, it might be shown that artifacts

have not moved significantly. Notably, a stratigraphically restricted study of Clovis technology

from a different excavation area at the Gault site than the one analyzed herein found that arti-

facts were moving vertical distances of at least 19 cm from a sample of only 27 refits [46].

Examination of stratigraphic differences in artifact size, long axis dip/inclination, lithic raw

materials, technology, or burning of artifacts could provide independent evidence for strati-

graphic integrity. Of great importance is the presence of cultural features in sealed strati-

graphic units associated with unambiguous occupation surfaces marked by sufficient artifact

counts to allow their identification. In short, there is no evidence for a stratigraphically discrete

archaeological occupation with large numbers of artifacts before 13,000 BP in the New World

except those in Beringia.

These observations provide support for the hypothesis that the first arrival of humans to

areas south of the Laurentide and Cordilleran glaciers occurred near in time to 13,000 BP. It is

possible humans colonized the New World thousands of years before 13,000 BP, but if they

did, they should have produced stratigraphically discrete occupation surfaces, some of which

would be expected to have large numbers of artifacts. That they did so in Beringia but failed to

do so south of the continental glaciers suggests that either there was something fundamentally

different about pre-Clovis human behavior and/or geomorphology south of the ice sheets or

that the evidence indicating the presence of humans south of the ice sheets has been misinter-

preted. At a minimum, it shows that when stratigraphically discrete occupations are not pres-

ent, additional studies must be performed to demonstrate that stratigraphic integrity of

association between artifacts and dated strata exists.

Conclusion

The oldest evidence for archaeological sites in the New World with large numbers of artifacts

occurring in discrete and minimally disturbed stratigraphic contexts occur in eastern Beringia

between 13,000 and 14,200 BP. South of the ice sheets, the oldest such sites occur in association

with the Clovis complex. If humans managed to breach the continental ice sheets significantly

before 13,000 BP, there should be clear evidence for it in the form of at least some stratigraphi-

cally discrete archaeological components with a relatively high artifact count. So far, no such

evidence exists. These findings support the hypothesis that the first human arrival to the New

World occurred by at least 14,200 BP in Beringia and by approximately 13,000 BP in the tem-

perate latitudes of North America. Strong evidence for human presence before those dates has

yet to be identified in the archaeological record.

PLOS ONE Late date of human arrival to North America

PLOS ONE | https://doi.org/10.1371/journal.pone.0264092 April 20, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0264092


Supporting information

S1 Fig. Dispersal rate function used in mixing simulation. Shown for rmax = 1 mm/yr.

(PDF)

S2 Fig. Results of a simulation illustrating a case of low ASI and high stratigraphic integ-

rity illustrated as a backplot (left) and vertical density histogram (right). In this model,

occupation intensity gradually increases over time and no vertical mixing occurs. In the back-

plot, artifacts are colored by occupation.

(PDF)

S3 Fig. Average number of artifacts per level vs. ASI for simulated multicomponent site

while varying the maximum rate of artifact dispersal (rmax).

(PDF)

S4 Fig. Example of method used to correct artifact elevations for stratigraphic tilt. Three-

dimensional scatterplot of artifacts from Holzman South with a plane fit by multiple linear

regression to component 5a.

(PDF)

S5 Fig. Backplot and vertical density histogram for Locality I of the Hell Gap site, Wyo-

ming for N 1481 to 1482 m and E 1294.5 to 1296.1 m.

(PDF)

S6 Fig. Backplot and vertical density histogram Alm Shelter, Wyoming for N98 to 99 and

E 99 to 100.

(PDF)

S7 Fig. Backplot and vertical density histogram for the Helen Lookingbill site, Wyoming

for N 1014 to 1015 m and E 974 to 976 m.

(PDF)

S8 Fig. Backplot and vertical density histogram of the Clovis component from the Shaw-

nee-Minisink site, Pennsylvania for N 154.89 4 to 158.374 m and E 152.37 to 155.39 m.

(PDF)

S9 Fig. Artifact counts by level for four areas of the Cactus Hill site. a. Block B, Unit 16; b.

Block B, Unit 17; c. W165 N100; d. W115 N70. Excavation levels at Cactus Hill were not dug

in uniform thicknesses.

(PDF)

S1 Table. Chipped stone artifact counts by 5 cm level for unit N98 E99 of Alm Shelter.
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S2 Table. Artifact and bone counts by 5 cm level for N 96 to 100 m and E 110 to 199 m of

the Broken Mammoth site. Relative elevation in the distance above or below a plane fit

through the LP component.
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S3 Table. Artifact and bone counts by 5 cm level for stratum LU3 of Area A of the Cooper’s

Ferry site.

(PDF)

S4 Table. Debitage and tool count by 5 cm level for Block A of the Debra Friedkin site.

(PDF)
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S7 Table. Chipped stone artifact and bone counts by 5 cm level for N 1014 to 1015 m and E
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(PDF)
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Ridge site.
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S11 Table. Artifact counts by 5 cm level for N 158.9 to 158.4 m and E 152.4 to 155.4 m

from the Clovis component of the Shawnee-Minisink site.
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from the Swan Point site. Relative elevations are distances above and below a plane fit

through all artifacts deeper than 1.18 m below datum.

(PDF)
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